Metamath Proof Explorer


Theorem cdlemg1cN

Description: Any translation belongs to the set of functions constructed for cdleme . TODO: Fix comment. (Contributed by NM, 18-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg1c.l ˙ = K
cdlemg1c.a A = Atoms K
cdlemg1c.h H = LHyp K
cdlemg1c.t T = LTrn K W
Assertion cdlemg1cN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T F = ι f T | f P = Q

Proof

Step Hyp Ref Expression
1 cdlemg1c.l ˙ = K
2 cdlemg1c.a A = Atoms K
3 cdlemg1c.h H = LHyp K
4 cdlemg1c.t T = LTrn K W
5 simpll1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T K HL W H
6 simpll2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T P A ¬ P ˙ W
7 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T F T
8 1 2 3 4 cdlemeiota K HL W H P A ¬ P ˙ W F T F = ι f T | f P = F P
9 5 6 7 8 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T F = ι f T | f P = F P
10 simplr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T F P = Q
11 10 eqeq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T f P = F P f P = Q
12 11 riotabidv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T ι f T | f P = F P = ι f T | f P = Q
13 9 12 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T F = ι f T | f P = Q
14 1 2 3 4 cdlemg1ci2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F = ι f T | f P = Q F T
15 14 adantlr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F = ι f T | f P = Q F T
16 13 15 impbida K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T F = ι f T | f P = Q