Metamath Proof Explorer


Theorem cdlemg1ci2

Description: Any function of the form of the function constructed for cdleme is a translation. TODO: Fix comment. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdlemg1c.l ˙ = K
cdlemg1c.a A = Atoms K
cdlemg1c.h H = LHyp K
cdlemg1c.t T = LTrn K W
Assertion cdlemg1ci2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F = ι f T | f P = Q F T

Proof

Step Hyp Ref Expression
1 cdlemg1c.l ˙ = K
2 cdlemg1c.a A = Atoms K
3 cdlemg1c.h H = LHyp K
4 cdlemg1c.t T = LTrn K W
5 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F = ι f T | f P = Q F = ι f T | f P = Q
6 eqid ι f T | f P = Q = ι f T | f P = Q
7 1 2 3 4 6 ltrniotacl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W ι f T | f P = Q T
8 7 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F = ι f T | f P = Q ι f T | f P = Q T
9 5 8 eqeltrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F = ι f T | f P = Q F T