Metamath Proof Explorer


Theorem cdlemg2ce

Description: Utility theorem to eliminate p,q when converting theorems with explicit f. TODO: fix comment. (Contributed by NM, 22-Apr-2013)

Ref Expression
Hypotheses cdlemg2.b B = Base K
cdlemg2.l ˙ = K
cdlemg2.j ˙ = join K
cdlemg2.m ˙ = meet K
cdlemg2.a A = Atoms K
cdlemg2.h H = LHyp K
cdlemg2.t T = LTrn K W
cdlemg2ex.u U = p ˙ q ˙ W
cdlemg2ex.d D = t ˙ U ˙ q ˙ p ˙ t ˙ W
cdlemg2ex.e E = p ˙ q ˙ D ˙ s ˙ t ˙ W
cdlemg2ex.g G = x B if p q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ p ˙ q ι y B | t A ¬ t ˙ W ¬ t ˙ p ˙ q y = E s / t D ˙ x ˙ W x
cdlemg2ce.p F = G ψ χ
cdlemg2ce.c K HL W H p A ¬ p ˙ W q A ¬ q ˙ W φ χ
Assertion cdlemg2ce K HL W H F T φ ψ

Proof

Step Hyp Ref Expression
1 cdlemg2.b B = Base K
2 cdlemg2.l ˙ = K
3 cdlemg2.j ˙ = join K
4 cdlemg2.m ˙ = meet K
5 cdlemg2.a A = Atoms K
6 cdlemg2.h H = LHyp K
7 cdlemg2.t T = LTrn K W
8 cdlemg2ex.u U = p ˙ q ˙ W
9 cdlemg2ex.d D = t ˙ U ˙ q ˙ p ˙ t ˙ W
10 cdlemg2ex.e E = p ˙ q ˙ D ˙ s ˙ t ˙ W
11 cdlemg2ex.g G = x B if p q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ p ˙ q ι y B | t A ¬ t ˙ W ¬ t ˙ p ˙ q y = E s / t D ˙ x ˙ W x
12 cdlemg2ce.p F = G ψ χ
13 cdlemg2ce.c K HL W H p A ¬ p ˙ W q A ¬ q ˙ W φ χ
14 simp2 K HL W H F T φ F T
15 1 2 3 4 5 6 7 8 9 10 11 cdlemg2cex K HL W H F T p A q A ¬ p ˙ W ¬ q ˙ W F = G
16 15 3ad2ant1 K HL W H F T φ F T p A q A ¬ p ˙ W ¬ q ˙ W F = G
17 14 16 mpbid K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G
18 simp11 K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G K HL W H
19 simp2l K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G p A
20 simp31 K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G ¬ p ˙ W
21 19 20 jca K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G p A ¬ p ˙ W
22 simp2r K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G q A
23 simp32 K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G ¬ q ˙ W
24 22 23 jca K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G q A ¬ q ˙ W
25 simp13 K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G φ
26 18 21 24 25 13 syl31anc K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G χ
27 simp33 K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G F = G
28 27 12 syl K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G ψ χ
29 26 28 mpbird K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G ψ
30 29 3exp K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G ψ
31 30 rexlimdvv K HL W H F T φ p A q A ¬ p ˙ W ¬ q ˙ W F = G ψ
32 17 31 mpd K HL W H F T φ ψ