Metamath Proof Explorer


Theorem cdlemg2dN

Description: This theorem can be used to shorten G = hypothesis. TODO: Fix comment. (Contributed by NM, 21-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg2.b B = Base K
cdlemg2.l ˙ = K
cdlemg2.j ˙ = join K
cdlemg2.m ˙ = meet K
cdlemg2.a A = Atoms K
cdlemg2.h H = LHyp K
cdlemg2.t T = LTrn K W
cdlemg2.u U = P ˙ Q ˙ W
cdlemg2.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemg2.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemg2.g G = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
Assertion cdlemg2dN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F = G

Proof

Step Hyp Ref Expression
1 cdlemg2.b B = Base K
2 cdlemg2.l ˙ = K
3 cdlemg2.j ˙ = join K
4 cdlemg2.m ˙ = meet K
5 cdlemg2.a A = Atoms K
6 cdlemg2.h H = LHyp K
7 cdlemg2.t T = LTrn K W
8 cdlemg2.u U = P ˙ Q ˙ W
9 cdlemg2.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
10 cdlemg2.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
11 cdlemg2.g G = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
12 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F T
13 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q K HL W H
14 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q P A ¬ P ˙ W
15 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q Q A ¬ Q ˙ W
16 simp3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F P = Q
17 1 2 3 4 5 6 7 8 9 10 11 cdlemg2cN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q F T F = G
18 13 14 15 16 17 syl31anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F T F = G
19 12 18 mpbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F = G