Metamath Proof Explorer


Theorem cdlemg2fvlem

Description: Lemma for cdlemg2fv . (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemg2.b B = Base K
cdlemg2.l ˙ = K
cdlemg2.j ˙ = join K
cdlemg2.m ˙ = meet K
cdlemg2.a A = Atoms K
cdlemg2.h H = LHyp K
cdlemg2.t T = LTrn K W
cdlemg2ex.u U = p ˙ q ˙ W
cdlemg2ex.d D = t ˙ U ˙ q ˙ p ˙ t ˙ W
cdlemg2ex.e E = p ˙ q ˙ D ˙ s ˙ t ˙ W
cdlemg2ex.g G = x B if p q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ p ˙ q ι y B | t A ¬ t ˙ W ¬ t ˙ p ˙ q y = E s / t D ˙ x ˙ W x
Assertion cdlemg2fvlem K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T P ˙ X ˙ W = X F X = F P ˙ X ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg2.b B = Base K
2 cdlemg2.l ˙ = K
3 cdlemg2.j ˙ = join K
4 cdlemg2.m ˙ = meet K
5 cdlemg2.a A = Atoms K
6 cdlemg2.h H = LHyp K
7 cdlemg2.t T = LTrn K W
8 cdlemg2ex.u U = p ˙ q ˙ W
9 cdlemg2ex.d D = t ˙ U ˙ q ˙ p ˙ t ˙ W
10 cdlemg2ex.e E = p ˙ q ˙ D ˙ s ˙ t ˙ W
11 cdlemg2ex.g G = x B if p q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ p ˙ q ι y B | t A ¬ t ˙ W ¬ t ˙ p ˙ q y = E s / t D ˙ x ˙ W x
12 simp1 K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T P ˙ X ˙ W = X K HL W H
13 simp3l K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T P ˙ X ˙ W = X F T
14 simp2r K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T P ˙ X ˙ W = X X B ¬ X ˙ W
15 simp2l K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T P ˙ X ˙ W = X P A ¬ P ˙ W
16 simp3r K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T P ˙ X ˙ W = X P ˙ X ˙ W = X
17 15 16 jca K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T P ˙ X ˙ W = X P A ¬ P ˙ W P ˙ X ˙ W = X
18 fveq1 F = G F X = G X
19 fveq1 F = G F P = G P
20 19 oveq1d F = G F P ˙ X ˙ W = G P ˙ X ˙ W
21 18 20 eqeq12d F = G F X = F P ˙ X ˙ W G X = G P ˙ X ˙ W
22 1 2 3 4 5 6 8 9 10 11 cdleme48fvg K HL W H p A ¬ p ˙ W q A ¬ q ˙ W X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X G X = G P ˙ X ˙ W
23 22 3expb K HL W H p A ¬ p ˙ W q A ¬ q ˙ W X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X G X = G P ˙ X ˙ W
24 1 2 3 4 5 6 7 8 9 10 11 21 23 cdlemg2ce K HL W H F T X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X F X = F P ˙ X ˙ W
25 12 13 14 17 24 syl112anc K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T P ˙ X ˙ W = X F X = F P ˙ X ˙ W