Metamath Proof Explorer


Theorem cdlemg2idN

Description: Version of cdleme31id with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 21-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg2id.l ˙ = K
cdlemg2id.a A = Atoms K
cdlemg2id.h H = LHyp K
cdlemg2id.t T = LTrn K W
cdlemg2id.b B = Base K
Assertion cdlemg2idN K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q F X = X

Proof

Step Hyp Ref Expression
1 cdlemg2id.l ˙ = K
2 cdlemg2id.a A = Atoms K
3 cdlemg2id.h H = LHyp K
4 cdlemg2id.t T = LTrn K W
5 cdlemg2id.b B = Base K
6 simp111 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q K HL
7 simp112 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q W H
8 simp12 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q P A ¬ P ˙ W
9 simp13 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q Q A ¬ Q ˙ W
10 simp113 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q F T
11 simp2l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q F P = Q
12 eqid join K = join K
13 eqid meet K = meet K
14 eqid P join K Q meet K W = P join K Q meet K W
15 eqid t join K P join K Q meet K W meet K Q join K P join K t meet K W = t join K P join K Q meet K W meet K Q join K P join K t meet K W
16 eqid P join K Q meet K t join K P join K Q meet K W meet K Q join K P join K t meet K W join K s join K t meet K W = P join K Q meet K t join K P join K Q meet K W meet K Q join K P join K t meet K W join K s join K t meet K W
17 eqid x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s join K x meet K W = x z = if s ˙ P join K Q ι y B | t A ¬ t ˙ W ¬ t ˙ P join K Q y = P join K Q meet K t join K P join K Q meet K W meet K Q join K P join K t meet K W join K s join K t meet K W s / t t join K P join K Q meet K W meet K Q join K P join K t meet K W join K x meet K W x = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s join K x meet K W = x z = if s ˙ P join K Q ι y B | t A ¬ t ˙ W ¬ t ˙ P join K Q y = P join K Q meet K t join K P join K Q meet K W meet K Q join K P join K t meet K W join K s join K t meet K W s / t t join K P join K Q meet K W meet K Q join K P join K t meet K W join K x meet K W x
18 5 1 12 13 2 3 4 14 15 16 17 cdlemg2dN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s join K x meet K W = x z = if s ˙ P join K Q ι y B | t A ¬ t ˙ W ¬ t ˙ P join K Q y = P join K Q meet K t join K P join K Q meet K W meet K Q join K P join K t meet K W join K s join K t meet K W s / t t join K P join K Q meet K W meet K Q join K P join K t meet K W join K x meet K W x
19 6 7 8 9 10 11 18 syl222anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s join K x meet K W = x z = if s ˙ P join K Q ι y B | t A ¬ t ˙ W ¬ t ˙ P join K Q y = P join K Q meet K t join K P join K Q meet K W meet K Q join K P join K t meet K W join K s join K t meet K W s / t t join K P join K Q meet K W meet K Q join K P join K t meet K W join K x meet K W x
20 19 fveq1d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q F X = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s join K x meet K W = x z = if s ˙ P join K Q ι y B | t A ¬ t ˙ W ¬ t ˙ P join K Q y = P join K Q meet K t join K P join K Q meet K W meet K Q join K P join K t meet K W join K s join K t meet K W s / t t join K P join K Q meet K W meet K Q join K P join K t meet K W join K x meet K W x X
21 simp2r K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q X B
22 simp3 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q P = Q
23 17 cdleme31id X B P = Q x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s join K x meet K W = x z = if s ˙ P join K Q ι y B | t A ¬ t ˙ W ¬ t ˙ P join K Q y = P join K Q meet K t join K P join K Q meet K W meet K Q join K P join K t meet K W join K s join K t meet K W s / t t join K P join K Q meet K W meet K Q join K P join K t meet K W join K x meet K W x X = X
24 21 22 23 syl2anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s join K x meet K W = x z = if s ˙ P join K Q ι y B | t A ¬ t ˙ W ¬ t ˙ P join K Q y = P join K Q meet K t join K P join K Q meet K W meet K Q join K P join K t meet K W join K s join K t meet K W s / t t join K P join K Q meet K W meet K Q join K P join K t meet K W join K x meet K W x X = X
25 20 24 eqtrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q X B P = Q F X = X