Metamath Proof Explorer


Theorem cdlemg2l

Description: TODO: FIX COMMENT. (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemg2inv.h H = LHyp K
cdlemg2inv.t T = LTrn K W
cdlemg2j.l ˙ = K
cdlemg2j.j ˙ = join K
cdlemg2j.a A = Atoms K
cdlemg2j.m ˙ = meet K
cdlemg2j.u U = P ˙ Q ˙ W
Assertion cdlemg2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = F G P ˙ U

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h H = LHyp K
2 cdlemg2inv.t T = LTrn K W
3 cdlemg2j.l ˙ = K
4 cdlemg2j.j ˙ = join K
5 cdlemg2j.a A = Atoms K
6 cdlemg2j.m ˙ = meet K
7 cdlemg2j.u U = P ˙ Q ˙ W
8 1 2 3 4 5 6 7 cdlemg2k K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T G P ˙ G Q = G P ˙ U
9 8 3adant3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G P ˙ G Q = G P ˙ U
10 9 fveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ G Q = F G P ˙ U
11 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T K HL W H
12 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F T
13 simp3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G T
14 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P A ¬ P ˙ W
15 3 5 1 2 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
16 11 13 14 15 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G P A ¬ G P ˙ W
17 16 simpld K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G P A
18 eqid Base K = Base K
19 18 5 atbase G P A G P Base K
20 17 19 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G P Base K
21 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q A ¬ Q ˙ W
22 3 5 1 2 ltrnel K HL W H G T Q A ¬ Q ˙ W G Q A ¬ G Q ˙ W
23 11 13 21 22 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G Q A ¬ G Q ˙ W
24 23 simpld K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G Q A
25 18 5 atbase G Q A G Q Base K
26 24 25 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G Q Base K
27 18 4 1 2 ltrnj K HL W H F T G P Base K G Q Base K F G P ˙ G Q = F G P ˙ F G Q
28 11 12 20 26 27 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ G Q = F G P ˙ F G Q
29 1 2 3 4 5 6 7 cdlemg2fv2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G P A ¬ G P ˙ W F T F G P ˙ U = F G P ˙ U
30 11 14 21 16 12 29 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ U = F G P ˙ U
31 10 28 30 3eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = F G P ˙ U