| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg2inv.h |
|
| 2 |
|
cdlemg2inv.t |
|
| 3 |
|
cdlemg2j.l |
|
| 4 |
|
cdlemg2j.j |
|
| 5 |
|
cdlemg2j.a |
|
| 6 |
|
cdlemg2j.m |
|
| 7 |
|
cdlemg2j.u |
|
| 8 |
1 2 3 4 5 6 7
|
cdlemg2k |
|
| 9 |
8
|
3adant3l |
|
| 10 |
9
|
fveq2d |
|
| 11 |
|
simp1 |
|
| 12 |
|
simp3l |
|
| 13 |
|
simp3r |
|
| 14 |
|
simp2l |
|
| 15 |
3 5 1 2
|
ltrnel |
|
| 16 |
11 13 14 15
|
syl3anc |
|
| 17 |
16
|
simpld |
|
| 18 |
|
eqid |
|
| 19 |
18 5
|
atbase |
|
| 20 |
17 19
|
syl |
|
| 21 |
|
simp2r |
|
| 22 |
3 5 1 2
|
ltrnel |
|
| 23 |
11 13 21 22
|
syl3anc |
|
| 24 |
23
|
simpld |
|
| 25 |
18 5
|
atbase |
|
| 26 |
24 25
|
syl |
|
| 27 |
18 4 1 2
|
ltrnj |
|
| 28 |
11 12 20 26 27
|
syl112anc |
|
| 29 |
1 2 3 4 5 6 7
|
cdlemg2fv2 |
|
| 30 |
11 14 21 16 12 29
|
syl131anc |
|
| 31 |
10 28 30
|
3eqtr3d |
|