| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
cdlemg31.n |
|
| 9 |
|
simp11l |
|
| 10 |
|
simp11r |
|
| 11 |
9 10
|
jca |
|
| 12 |
|
simp13 |
|
| 13 |
|
simp31 |
|
| 14 |
13
|
necomd |
|
| 15 |
|
simp12 |
|
| 16 |
|
simp2r |
|
| 17 |
|
simp32 |
|
| 18 |
1 4 5 6 7
|
trlat |
|
| 19 |
11 15 16 17 18
|
syl112anc |
|
| 20 |
1 5 6 7
|
trlle |
|
| 21 |
11 16 20
|
syl2anc |
|
| 22 |
|
simp2l |
|
| 23 |
1 2 4 5
|
lhp2atnle |
|
| 24 |
11 12 14 19 21 22 23
|
syl321anc |
|
| 25 |
|
simp12l |
|
| 26 |
|
simp13l |
|
| 27 |
|
simp2ll |
|
| 28 |
1 2 3 4 5 6 7 8
|
cdlemg31a |
|
| 29 |
9 10 25 26 27 16 28
|
syl222anc |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simp111 |
|
| 32 |
|
simp112 |
|
| 33 |
|
simp3 |
|
| 34 |
33
|
necomd |
|
| 35 |
|
simp12l |
|
| 36 |
|
simp133 |
|
| 37 |
|
simp2 |
|
| 38 |
1 2 4 5
|
lhp2atnle |
|
| 39 |
31 32 34 35 36 37 38
|
syl312anc |
|
| 40 |
39
|
3expia |
|
| 41 |
40
|
necon4ad |
|
| 42 |
30 41
|
mpd |
|
| 43 |
1 2 3 4 5 6 7 8
|
cdlemg31b |
|
| 44 |
9 10 25 26 27 16 43
|
syl222anc |
|
| 45 |
44
|
adantr |
|
| 46 |
42 45
|
eqbrtrrd |
|
| 47 |
24 46
|
mtand |
|