| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
cdlemg31.n |
|
| 9 |
|
simp11 |
|
| 10 |
|
simp12 |
|
| 11 |
|
simp13 |
|
| 12 |
|
simp22 |
|
| 13 |
|
simp21l |
|
| 14 |
|
simp21r |
|
| 15 |
13 14
|
jca |
|
| 16 |
|
simp23 |
|
| 17 |
|
simp32 |
|
| 18 |
1 2 3 4 5 6 7 8
|
cdlemg31d |
|
| 19 |
9 10 11 15 16 17 12 18
|
syl133anc |
|
| 20 |
12 19
|
jca |
|
| 21 |
|
simp31 |
|
| 22 |
|
nbrne2 |
|
| 23 |
22
|
necomd |
|
| 24 |
14 19 23
|
syl2anc |
|
| 25 |
13 24
|
jca |
|
| 26 |
|
simp33 |
|
| 27 |
1 2 4 5
|
4atex3 |
|
| 28 |
9 10 11 20 21 25 26 27
|
syl133anc |
|
| 29 |
|
df-3an |
|
| 30 |
|
simpl |
|
| 31 |
30
|
a1i |
|
| 32 |
|
simp12l |
|
| 33 |
|
simp13l |
|
| 34 |
1 2 3 4 5 6 7 8
|
cdlemg31a |
|
| 35 |
9 32 33 13 16 34
|
syl122anc |
|
| 36 |
|
simp11l |
|
| 37 |
1 2 4
|
hlatlej2 |
|
| 38 |
36 32 13 37
|
syl3anc |
|
| 39 |
36
|
hllatd |
|
| 40 |
|
eqid |
|
| 41 |
40 4
|
atbase |
|
| 42 |
12 41
|
syl |
|
| 43 |
40 4
|
atbase |
|
| 44 |
13 43
|
syl |
|
| 45 |
40 2 4
|
hlatjcl |
|
| 46 |
36 32 13 45
|
syl3anc |
|
| 47 |
40 1 2
|
latjle12 |
|
| 48 |
39 42 44 46 47
|
syl13anc |
|
| 49 |
35 38 48
|
mpbi2and |
|
| 50 |
49
|
adantr |
|
| 51 |
39
|
adantr |
|
| 52 |
40 4
|
atbase |
|
| 53 |
52
|
adantl |
|
| 54 |
40 2 4
|
hlatjcl |
|
| 55 |
36 12 13 54
|
syl3anc |
|
| 56 |
55
|
adantr |
|
| 57 |
46
|
adantr |
|
| 58 |
40 1
|
lattr |
|
| 59 |
51 53 56 57 58
|
syl13anc |
|
| 60 |
50 59
|
mpan2d |
|
| 61 |
31 60
|
anim12d |
|
| 62 |
29 61
|
biimtrid |
|
| 63 |
62
|
anim2d |
|
| 64 |
63
|
reximdva |
|
| 65 |
28 64
|
mpd |
|