| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
cdlemg31.n |
|
| 9 |
|
cdlemg33.o |
|
| 10 |
|
simp1 |
|
| 11 |
|
simp21 |
|
| 12 |
|
simp23l |
|
| 13 |
|
simp3 |
|
| 14 |
1 2 3 4 5 6 7 8
|
cdlemg33c0 |
|
| 15 |
10 11 12 13 14
|
syl121anc |
|
| 16 |
|
simp11l |
|
| 17 |
|
hlatl |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
eqid |
|
| 20 |
19 4
|
atn0 |
|
| 21 |
18 20
|
sylan |
|
| 22 |
|
simp22l |
|
| 23 |
22
|
adantr |
|
| 24 |
21 23
|
neeqtrrd |
|
| 25 |
|
simp22r |
|
| 26 |
25
|
adantr |
|
| 27 |
21 26
|
neeqtrrd |
|
| 28 |
24 27
|
jca |
|
| 29 |
28
|
biantrurd |
|
| 30 |
|
df-3an |
|
| 31 |
29 30
|
bitr4di |
|
| 32 |
31
|
anbi2d |
|
| 33 |
32
|
rexbidva |
|
| 34 |
15 33
|
mpbid |
|