| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg4.l |
|
| 2 |
|
cdlemg4.a |
|
| 3 |
|
cdlemg4.h |
|
| 4 |
|
cdlemg4.t |
|
| 5 |
|
cdlemg4.r |
|
| 6 |
|
cdlemg4.j |
|
| 7 |
|
cdlemg4b.v |
|
| 8 |
|
simpll |
|
| 9 |
|
simplr2 |
|
| 10 |
|
simplr3 |
|
| 11 |
1 2 3 4 5 6 7
|
cdlemg4b2 |
|
| 12 |
8 9 10 11
|
syl3anc |
|
| 13 |
|
simpr |
|
| 14 |
|
simpll |
|
| 15 |
14
|
hllatd |
|
| 16 |
|
simpr1l |
|
| 17 |
|
eqid |
|
| 18 |
17 2
|
atbase |
|
| 19 |
16 18
|
syl |
|
| 20 |
|
simpl |
|
| 21 |
|
simpr3 |
|
| 22 |
17 3 4 5
|
trlcl |
|
| 23 |
20 21 22
|
syl2anc |
|
| 24 |
7 23
|
eqeltrid |
|
| 25 |
17 1 6
|
latlej2 |
|
| 26 |
15 19 24 25
|
syl3anc |
|
| 27 |
26
|
adantr |
|
| 28 |
|
simpr2l |
|
| 29 |
17 2
|
atbase |
|
| 30 |
28 29
|
syl |
|
| 31 |
17 3 4
|
ltrncl |
|
| 32 |
20 21 30 31
|
syl3anc |
|
| 33 |
17 6
|
latjcl |
|
| 34 |
15 19 24 33
|
syl3anc |
|
| 35 |
17 1 6
|
latjle12 |
|
| 36 |
15 32 24 34 35
|
syl13anc |
|
| 37 |
36
|
adantr |
|
| 38 |
13 27 37
|
mpbi2and |
|
| 39 |
12 38
|
eqbrtrrd |
|
| 40 |
15
|
adantr |
|
| 41 |
30
|
adantr |
|
| 42 |
32
|
adantr |
|
| 43 |
19
|
adantr |
|
| 44 |
8 10 22
|
syl2anc |
|
| 45 |
7 44
|
eqeltrid |
|
| 46 |
40 43 45 33
|
syl3anc |
|
| 47 |
17 1 6
|
latjle12 |
|
| 48 |
40 41 42 46 47
|
syl13anc |
|
| 49 |
39 48
|
mpbird |
|
| 50 |
49
|
simpld |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
con3d |
|
| 53 |
52
|
3impia |
|