Metamath Proof Explorer


Theorem cdlemg5

Description: TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle ? TODO: The .\/ hypothesis is unused. FIX COMMENT. (Contributed by NM, 26-Apr-2013)

Ref Expression
Hypotheses cdlemg5.l ˙ = K
cdlemg5.j ˙ = join K
cdlemg5.a A = Atoms K
cdlemg5.h H = LHyp K
Assertion cdlemg5 K HL W H P A ¬ P ˙ W q A P q ¬ q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg5.l ˙ = K
2 cdlemg5.j ˙ = join K
3 cdlemg5.a A = Atoms K
4 cdlemg5.h H = LHyp K
5 1 3 4 lhpexle K HL W H r A r ˙ W
6 5 adantr K HL W H P A ¬ P ˙ W r A r ˙ W
7 simpll K HL W H P A ¬ P ˙ W r A r ˙ W K HL W H
8 simpr K HL W H P A ¬ P ˙ W r A r ˙ W r A r ˙ W
9 simplr K HL W H P A ¬ P ˙ W r A r ˙ W P A ¬ P ˙ W
10 1 2 3 4 cdlemf1 K HL W H r A r ˙ W P A ¬ P ˙ W q A P q ¬ q ˙ W r ˙ P ˙ q
11 7 8 9 10 syl3anc K HL W H P A ¬ P ˙ W r A r ˙ W q A P q ¬ q ˙ W r ˙ P ˙ q
12 3simpa P q ¬ q ˙ W r ˙ P ˙ q P q ¬ q ˙ W
13 12 reximi q A P q ¬ q ˙ W r ˙ P ˙ q q A P q ¬ q ˙ W
14 11 13 syl K HL W H P A ¬ P ˙ W r A r ˙ W q A P q ¬ q ˙ W
15 6 14 rexlimddv K HL W H P A ¬ P ˙ W q A P q ¬ q ˙ W