Metamath Proof Explorer


Theorem cdlemg6

Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg6.l ˙ = K
cdlemg6.a A = Atoms K
cdlemg6.h H = LHyp K
cdlemg6.t T = LTrn K W
Assertion cdlemg6 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P F G Q = Q

Proof

Step Hyp Ref Expression
1 cdlemg6.l ˙ = K
2 cdlemg6.a A = Atoms K
3 cdlemg6.h H = LHyp K
4 cdlemg6.t T = LTrn K W
5 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ P join K trL K W G K HL W H
6 simpl2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ P join K trL K W G P A ¬ P ˙ W
7 simpl2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ P join K trL K W G Q A ¬ Q ˙ W
8 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ P join K trL K W G F T
9 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ P join K trL K W G G T
10 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ P join K trL K W G Q ˙ P join K trL K W G
11 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ P join K trL K W G F G P = P
12 eqid trL K W = trL K W
13 eqid join K = join K
14 eqid trL K W G = trL K W G
15 1 2 3 4 12 13 14 cdlemg6e K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P join K trL K W G F G P = P F G Q = Q
16 5 6 7 8 9 10 11 15 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ P join K trL K W G F G Q = Q
17 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P ¬ Q ˙ P join K trL K W G K HL W H
18 simpl2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P ¬ Q ˙ P join K trL K W G P A ¬ P ˙ W
19 simpl2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P ¬ Q ˙ P join K trL K W G Q A ¬ Q ˙ W
20 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P ¬ Q ˙ P join K trL K W G F T
21 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P ¬ Q ˙ P join K trL K W G G T
22 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P ¬ Q ˙ P join K trL K W G ¬ Q ˙ P join K trL K W G
23 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P ¬ Q ˙ P join K trL K W G F G P = P
24 1 2 3 4 12 13 14 cdlemg4 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T ¬ Q ˙ P join K trL K W G F G P = P F G Q = Q
25 17 18 19 20 21 22 23 24 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P ¬ Q ˙ P join K trL K W G F G Q = Q
26 16 25 pm2.61dan K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P F G Q = Q