Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdlemg6a
Next ⟩
cdlemg6b
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdlemg6a
Description:
TODO: FIX COMMENT. TODO: replace with
cdlemg4
.
(Contributed by
NM
, 27-Apr-2013)
Ref
Expression
Hypotheses
cdlemg4.l
⊢
≤
˙
=
≤
K
cdlemg4.a
⊢
A
=
Atoms
⁡
K
cdlemg4.h
⊢
H
=
LHyp
⁡
K
cdlemg4.t
⊢
T
=
LTrn
⁡
K
⁡
W
cdlemg4.r
⊢
R
=
trL
⁡
K
⁡
W
cdlemg4.j
⊢
∨
˙
=
join
⁡
K
cdlemg4b.v
⊢
V
=
R
⁡
G
Assertion
cdlemg6a
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
r
∈
A
∧
¬
r
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
¬
r
≤
˙
P
∨
˙
V
∧
F
⁡
G
⁡
P
=
P
→
F
⁡
G
⁡
r
=
r
Proof
Step
Hyp
Ref
Expression
1
cdlemg4.l
⊢
≤
˙
=
≤
K
2
cdlemg4.a
⊢
A
=
Atoms
⁡
K
3
cdlemg4.h
⊢
H
=
LHyp
⁡
K
4
cdlemg4.t
⊢
T
=
LTrn
⁡
K
⁡
W
5
cdlemg4.r
⊢
R
=
trL
⁡
K
⁡
W
6
cdlemg4.j
⊢
∨
˙
=
join
⁡
K
7
cdlemg4b.v
⊢
V
=
R
⁡
G
8
1
2
3
4
5
6
7
cdlemg4
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
r
∈
A
∧
¬
r
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
¬
r
≤
˙
P
∨
˙
V
∧
F
⁡
G
⁡
P
=
P
→
F
⁡
G
⁡
r
=
r