Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
|
2 |
|
cdlemg4.a |
|
3 |
|
cdlemg4.h |
|
4 |
|
cdlemg4.t |
|
5 |
|
cdlemg4.r |
|
6 |
|
cdlemg4.j |
|
7 |
|
cdlemg4b.v |
|
8 |
|
simpl1 |
|
9 |
|
simprl |
|
10 |
|
simpl22 |
|
11 |
|
simpl23 |
|
12 |
|
simpl31 |
|
13 |
|
simprr |
|
14 |
|
simpl1l |
|
15 |
|
simp22l |
|
16 |
15
|
adantr |
|
17 |
|
simprll |
|
18 |
|
eqid |
|
19 |
18 3 4 5
|
trlcl |
|
20 |
8 12 19
|
syl2anc |
|
21 |
7 20
|
eqeltrid |
|
22 |
|
simp22r |
|
23 |
22
|
adantr |
|
24 |
1 3 4 5
|
trlle |
|
25 |
8 12 24
|
syl2anc |
|
26 |
7 25
|
eqbrtrid |
|
27 |
|
simp1l |
|
28 |
27
|
hllatd |
|
29 |
28
|
adantr |
|
30 |
18 2
|
atbase |
|
31 |
15 30
|
syl |
|
32 |
31
|
adantr |
|
33 |
|
simp1r |
|
34 |
18 3
|
lhpbase |
|
35 |
33 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
18 1
|
lattr |
|
38 |
29 32 21 36 37
|
syl13anc |
|
39 |
26 38
|
mpan2d |
|
40 |
23 39
|
mtod |
|
41 |
18 1 6 2
|
hlexch2 |
|
42 |
14 16 17 21 40 41
|
syl131anc |
|
43 |
|
simpl32 |
|
44 |
|
simp21l |
|
45 |
44
|
adantr |
|
46 |
18 2
|
atbase |
|
47 |
45 46
|
syl |
|
48 |
18 1 6
|
latlej2 |
|
49 |
29 47 21 48
|
syl3anc |
|
50 |
18 6
|
latjcl |
|
51 |
29 47 21 50
|
syl3anc |
|
52 |
18 1 6
|
latjle12 |
|
53 |
29 32 21 51 52
|
syl13anc |
|
54 |
43 49 53
|
mpbi2and |
|
55 |
18 2
|
atbase |
|
56 |
17 55
|
syl |
|
57 |
18 6
|
latjcl |
|
58 |
29 32 21 57
|
syl3anc |
|
59 |
18 1
|
lattr |
|
60 |
29 56 58 51 59
|
syl13anc |
|
61 |
54 60
|
mpan2d |
|
62 |
42 61
|
syld |
|
63 |
13 62
|
mtod |
|
64 |
|
simpl21 |
|
65 |
|
simpl33 |
|
66 |
1 2 3 4 5 6 7
|
cdlemg6a |
|
67 |
8 64 9 11 12 13 65 66
|
syl133anc |
|
68 |
1 2 3 4 5 6 7
|
cdlemg6b |
|
69 |
8 9 10 11 12 63 67 68
|
syl133anc |
|
70 |
69
|
ex |
|