Metamath Proof Explorer


Theorem cdlemg6c

Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l ˙ = K
cdlemg4.a A = Atoms K
cdlemg4.h H = LHyp K
cdlemg4.t T = LTrn K W
cdlemg4.r R = trL K W
cdlemg4.j ˙ = join K
cdlemg4b.v V = R G
Assertion cdlemg6c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V F G Q = Q

Proof

Step Hyp Ref Expression
1 cdlemg4.l ˙ = K
2 cdlemg4.a A = Atoms K
3 cdlemg4.h H = LHyp K
4 cdlemg4.t T = LTrn K W
5 cdlemg4.r R = trL K W
6 cdlemg4.j ˙ = join K
7 cdlemg4b.v V = R G
8 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V K HL W H
9 simprl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V r A ¬ r ˙ W
10 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q A ¬ Q ˙ W
11 simpl23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V F T
12 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V G T
13 simprr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V ¬ r ˙ P ˙ V
14 simpl1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V K HL
15 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P Q A
16 15 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q A
17 simprll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V r A
18 eqid Base K = Base K
19 18 3 4 5 trlcl K HL W H G T R G Base K
20 8 12 19 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V R G Base K
21 7 20 eqeltrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V V Base K
22 simp22r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P ¬ Q ˙ W
23 22 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V ¬ Q ˙ W
24 1 3 4 5 trlle K HL W H G T R G ˙ W
25 8 12 24 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V R G ˙ W
26 7 25 eqbrtrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V V ˙ W
27 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P K HL
28 27 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P K Lat
29 28 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V K Lat
30 18 2 atbase Q A Q Base K
31 15 30 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P Q Base K
32 31 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q Base K
33 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P W H
34 18 3 lhpbase W H W Base K
35 33 34 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P W Base K
36 35 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V W Base K
37 18 1 lattr K Lat Q Base K V Base K W Base K Q ˙ V V ˙ W Q ˙ W
38 29 32 21 36 37 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q ˙ V V ˙ W Q ˙ W
39 26 38 mpan2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q ˙ V Q ˙ W
40 23 39 mtod K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V ¬ Q ˙ V
41 18 1 6 2 hlexch2 K HL Q A r A V Base K ¬ Q ˙ V Q ˙ r ˙ V r ˙ Q ˙ V
42 14 16 17 21 40 41 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q ˙ r ˙ V r ˙ Q ˙ V
43 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q ˙ P ˙ V
44 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P P A
45 44 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V P A
46 18 2 atbase P A P Base K
47 45 46 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V P Base K
48 18 1 6 latlej2 K Lat P Base K V Base K V ˙ P ˙ V
49 29 47 21 48 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V V ˙ P ˙ V
50 18 6 latjcl K Lat P Base K V Base K P ˙ V Base K
51 29 47 21 50 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V P ˙ V Base K
52 18 1 6 latjle12 K Lat Q Base K V Base K P ˙ V Base K Q ˙ P ˙ V V ˙ P ˙ V Q ˙ V ˙ P ˙ V
53 29 32 21 51 52 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q ˙ P ˙ V V ˙ P ˙ V Q ˙ V ˙ P ˙ V
54 43 49 53 mpbi2and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q ˙ V ˙ P ˙ V
55 18 2 atbase r A r Base K
56 17 55 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V r Base K
57 18 6 latjcl K Lat Q Base K V Base K Q ˙ V Base K
58 29 32 21 57 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q ˙ V Base K
59 18 1 lattr K Lat r Base K Q ˙ V Base K P ˙ V Base K r ˙ Q ˙ V Q ˙ V ˙ P ˙ V r ˙ P ˙ V
60 29 56 58 51 59 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V r ˙ Q ˙ V Q ˙ V ˙ P ˙ V r ˙ P ˙ V
61 54 60 mpan2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V r ˙ Q ˙ V r ˙ P ˙ V
62 42 61 syld K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V Q ˙ r ˙ V r ˙ P ˙ V
63 13 62 mtod K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V ¬ Q ˙ r ˙ V
64 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V P A ¬ P ˙ W
65 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V F G P = P
66 1 2 3 4 5 6 7 cdlemg6a K HL W H P A ¬ P ˙ W r A ¬ r ˙ W F T G T ¬ r ˙ P ˙ V F G P = P F G r = r
67 8 64 9 11 12 13 65 66 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V F G r = r
68 1 2 3 4 5 6 7 cdlemg6b K HL W H r A ¬ r ˙ W Q A ¬ Q ˙ W F T G T ¬ Q ˙ r ˙ V F G r = r F G Q = Q
69 8 9 10 11 12 63 67 68 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V F G Q = Q
70 69 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V F G Q = Q