Metamath Proof Explorer


Theorem cdlemg6d

Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l ˙ = K
cdlemg4.a A = Atoms K
cdlemg4.h H = LHyp K
cdlemg4.t T = LTrn K W
cdlemg4.r R = trL K W
cdlemg4.j ˙ = join K
cdlemg4b.v V = R G
Assertion cdlemg6d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ G P F G Q = Q

Proof

Step Hyp Ref Expression
1 cdlemg4.l ˙ = K
2 cdlemg4.a A = Atoms K
3 cdlemg4.h H = LHyp K
4 cdlemg4.t T = LTrn K W
5 cdlemg4.r R = trL K W
6 cdlemg4.j ˙ = join K
7 cdlemg4b.v V = R G
8 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P K HL W H
9 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P P A ¬ P ˙ W
10 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P G T
11 1 2 3 4 5 6 7 cdlemg4b1 K HL W H P A ¬ P ˙ W G T P ˙ V = P ˙ G P
12 8 9 10 11 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P P ˙ V = P ˙ G P
13 12 breq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r ˙ P ˙ V r ˙ P ˙ G P
14 13 notbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P ¬ r ˙ P ˙ V ¬ r ˙ P ˙ G P
15 14 anbi2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V r A ¬ r ˙ W ¬ r ˙ P ˙ G P
16 1 2 3 4 5 6 7 cdlemg6c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ V F G Q = Q
17 15 16 sylbird K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ G P F G Q = Q