Metamath Proof Explorer


Theorem cdlemg6e

Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l ˙ = K
cdlemg4.a A = Atoms K
cdlemg4.h H = LHyp K
cdlemg4.t T = LTrn K W
cdlemg4.r R = trL K W
cdlemg4.j ˙ = join K
cdlemg4b.v V = R G
Assertion cdlemg6e K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P F G Q = Q

Proof

Step Hyp Ref Expression
1 cdlemg4.l ˙ = K
2 cdlemg4.a A = Atoms K
3 cdlemg4.h H = LHyp K
4 cdlemg4.t T = LTrn K W
5 cdlemg4.r R = trL K W
6 cdlemg4.j ˙ = join K
7 cdlemg4b.v V = R G
8 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P K HL W H
9 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P P A ¬ P ˙ W
10 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P G T
11 1 2 3 4 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
12 8 10 9 11 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P G P A ¬ G P ˙ W
13 1 6 2 3 cdlemb3 K HL W H P A ¬ P ˙ W G P A ¬ G P ˙ W r A ¬ r ˙ W ¬ r ˙ P ˙ G P
14 8 9 12 13 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ G P
15 1 2 3 4 5 6 7 cdlemg6d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ G P F G Q = Q
16 15 exp4c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ G P F G Q = Q
17 16 imp4a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ G P F G Q = Q
18 17 rexlimdv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P r A ¬ r ˙ W ¬ r ˙ P ˙ G P F G Q = Q
19 14 18 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q ˙ P ˙ V F G P = P F G Q = Q