Metamath Proof Explorer


Theorem cdlemg7N

Description: TODO: FIX COMMENT. (Contributed by NM, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg7.b B = Base K
cdlemg7.l ˙ = K
cdlemg7.a A = Atoms K
cdlemg7.h H = LHyp K
cdlemg7.t T = LTrn K W
Assertion cdlemg7N K HL W H P A ¬ P ˙ W X B F T G T F G P = P F G X = X

Proof

Step Hyp Ref Expression
1 cdlemg7.b B = Base K
2 cdlemg7.l ˙ = K
3 cdlemg7.a A = Atoms K
4 cdlemg7.h H = LHyp K
5 cdlemg7.t T = LTrn K W
6 simpl1 K HL W H P A ¬ P ˙ W X B F T G T F G P = P X ˙ W K HL W H
7 simpl31 K HL W H P A ¬ P ˙ W X B F T G T F G P = P X ˙ W F T
8 simpl32 K HL W H P A ¬ P ˙ W X B F T G T F G P = P X ˙ W G T
9 simpl2r K HL W H P A ¬ P ˙ W X B F T G T F G P = P X ˙ W X B
10 1 4 5 ltrncl K HL W H G T X B G X B
11 6 8 9 10 syl3anc K HL W H P A ¬ P ˙ W X B F T G T F G P = P X ˙ W G X B
12 simpr K HL W H P A ¬ P ˙ W X B F T G T F G P = P X ˙ W X ˙ W
13 1 2 4 5 ltrnval1 K HL W H G T X B X ˙ W G X = X
14 6 8 9 12 13 syl112anc K HL W H P A ¬ P ˙ W X B F T G T F G P = P X ˙ W G X = X
15 14 12 eqbrtrd K HL W H P A ¬ P ˙ W X B F T G T F G P = P X ˙ W G X ˙ W
16 1 2 4 5 ltrnval1 K HL W H F T G X B G X ˙ W F G X = G X
17 6 7 11 15 16 syl112anc K HL W H P A ¬ P ˙ W X B F T G T F G P = P X ˙ W F G X = G X
18 17 14 eqtrd K HL W H P A ¬ P ˙ W X B F T G T F G P = P X ˙ W F G X = X
19 simpl1 K HL W H P A ¬ P ˙ W X B F T G T F G P = P ¬ X ˙ W K HL W H
20 simpl2l K HL W H P A ¬ P ˙ W X B F T G T F G P = P ¬ X ˙ W P A ¬ P ˙ W
21 simpl2r K HL W H P A ¬ P ˙ W X B F T G T F G P = P ¬ X ˙ W X B
22 simpr K HL W H P A ¬ P ˙ W X B F T G T F G P = P ¬ X ˙ W ¬ X ˙ W
23 21 22 jca K HL W H P A ¬ P ˙ W X B F T G T F G P = P ¬ X ˙ W X B ¬ X ˙ W
24 simpl31 K HL W H P A ¬ P ˙ W X B F T G T F G P = P ¬ X ˙ W F T
25 simpl32 K HL W H P A ¬ P ˙ W X B F T G T F G P = P ¬ X ˙ W G T
26 simpl33 K HL W H P A ¬ P ˙ W X B F T G T F G P = P ¬ X ˙ W F G P = P
27 1 2 3 4 5 cdlemg7aN K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P F G X = X
28 19 20 23 24 25 26 27 syl123anc K HL W H P A ¬ P ˙ W X B F T G T F G P = P ¬ X ˙ W F G X = X
29 18 28 pm2.61dan K HL W H P A ¬ P ˙ W X B F T G T F G P = P F G X = X