Metamath Proof Explorer


Theorem cdlemg7aN

Description: TODO: FIX COMMENT. (Contributed by NM, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg7.b B = Base K
cdlemg7.l ˙ = K
cdlemg7.a A = Atoms K
cdlemg7.h H = LHyp K
cdlemg7.t T = LTrn K W
Assertion cdlemg7aN K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P F G X = X

Proof

Step Hyp Ref Expression
1 cdlemg7.b B = Base K
2 cdlemg7.l ˙ = K
3 cdlemg7.a A = Atoms K
4 cdlemg7.h H = LHyp K
5 cdlemg7.t T = LTrn K W
6 simp1l K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P K HL
7 simp1r K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P W H
8 simp2r K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P X B ¬ X ˙ W
9 eqid join K = join K
10 eqid meet K = meet K
11 1 2 9 10 3 4 lhpmcvr2 K HL W H X B ¬ X ˙ W r A ¬ r ˙ W r join K X meet K W = X
12 6 7 8 11 syl21anc K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X
13 simp11 K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X K HL W H
14 simp2 K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X r A
15 simp3l K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X ¬ r ˙ W
16 14 15 jca K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X r A ¬ r ˙ W
17 simp12r K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X X B ¬ X ˙ W
18 simp131 K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X F T
19 simp132 K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X G T
20 simp3r K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X r join K X meet K W = X
21 1 2 9 10 3 4 5 cdlemg7fvN K HL W H r A ¬ r ˙ W X B ¬ X ˙ W F T G T r join K X meet K W = X F G X = F G r join K X meet K W
22 13 16 17 18 19 20 21 syl123anc K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X F G X = F G r join K X meet K W
23 simp12l K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X P A ¬ P ˙ W
24 simp133 K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X F G P = P
25 2 3 4 5 cdlemg6 K HL W H P A ¬ P ˙ W r A ¬ r ˙ W F T G T F G P = P F G r = r
26 13 23 16 18 19 24 25 syl123anc K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X F G r = r
27 26 oveq1d K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X F G r join K X meet K W = r join K X meet K W
28 22 27 20 3eqtrd K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X F G X = X
29 28 rexlimdv3a K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P r A ¬ r ˙ W r join K X meet K W = X F G X = X
30 12 29 mpd K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T F G P = P F G X = X