Metamath Proof Explorer


Theorem cdlemg7fvN

Description: Value of a translation composition in terms of an associated atom. (Contributed by NM, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg7fv.b B = Base K
cdlemg7fv.l ˙ = K
cdlemg7fv.j ˙ = join K
cdlemg7fv.m ˙ = meet K
cdlemg7fv.a A = Atoms K
cdlemg7fv.h H = LHyp K
cdlemg7fv.t T = LTrn K W
Assertion cdlemg7fvN K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X F G X = F G P ˙ X ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg7fv.b B = Base K
2 cdlemg7fv.l ˙ = K
3 cdlemg7fv.j ˙ = join K
4 cdlemg7fv.m ˙ = meet K
5 cdlemg7fv.a A = Atoms K
6 cdlemg7fv.h H = LHyp K
7 cdlemg7fv.t T = LTrn K W
8 simp1 K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X K HL W H
9 simp32 K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X G T
10 simp2l K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X P A ¬ P ˙ W
11 2 5 6 7 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
12 8 9 10 11 syl3anc K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X G P A ¬ G P ˙ W
13 simp2r K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X X B ¬ X ˙ W
14 2 5 6 7 1 cdlemg7fvbwN K HL W H X B ¬ X ˙ W G T G X B ¬ G X ˙ W
15 8 13 9 14 syl3anc K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X G X B ¬ G X ˙ W
16 simp31 K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X F T
17 simp33 K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X P ˙ X ˙ W = X
18 6 7 2 3 5 4 1 cdlemg2fv K HL W H P A ¬ P ˙ W X B ¬ X ˙ W G T P ˙ X ˙ W = X G X = G P ˙ X ˙ W
19 8 10 13 9 17 18 syl122anc K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X G X = G P ˙ X ˙ W
20 19 oveq1d K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X G X ˙ W = G P ˙ X ˙ W ˙ W
21 simp2rl K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X X B
22 1 2 3 4 5 6 lhpelim K HL W H G P A ¬ G P ˙ W X B G P ˙ X ˙ W ˙ W = X ˙ W
23 8 12 21 22 syl3anc K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X G P ˙ X ˙ W ˙ W = X ˙ W
24 20 23 eqtrd K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X G X ˙ W = X ˙ W
25 24 oveq2d K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X G P ˙ G X ˙ W = G P ˙ X ˙ W
26 25 19 eqtr4d K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X G P ˙ G X ˙ W = G X
27 6 7 2 3 5 4 1 cdlemg2fv K HL W H G P A ¬ G P ˙ W G X B ¬ G X ˙ W F T G P ˙ G X ˙ W = G X F G X = F G P ˙ G X ˙ W
28 8 12 15 16 26 27 syl122anc K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X F G X = F G P ˙ G X ˙ W
29 24 oveq2d K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X F G P ˙ G X ˙ W = F G P ˙ X ˙ W
30 28 29 eqtrd K HL W H P A ¬ P ˙ W X B ¬ X ˙ W F T G T P ˙ X ˙ W = X F G X = F G P ˙ X ˙ W