Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
|
2 |
|
cdlemg4.a |
|
3 |
|
cdlemg4.h |
|
4 |
|
cdlemg4.t |
|
5 |
|
cdlemg4.b |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
5 1 6 7 2 3
|
lhpmcvr2 |
|
9 |
8
|
3adant3 |
|
10 |
|
simp11 |
|
11 |
|
simp2 |
|
12 |
|
simp3l |
|
13 |
11 12
|
jca |
|
14 |
|
simp12 |
|
15 |
|
simp13 |
|
16 |
|
simp3r |
|
17 |
3 4 1 6 2 7 5
|
cdlemg2fv |
|
18 |
10 13 14 15 16 17
|
syl122anc |
|
19 |
|
simp11l |
|
20 |
19
|
hllatd |
|
21 |
1 2 3 4
|
ltrnel |
|
22 |
21
|
simpld |
|
23 |
10 15 13 22
|
syl3anc |
|
24 |
5 2
|
atbase |
|
25 |
23 24
|
syl |
|
26 |
|
simp12l |
|
27 |
|
simp11r |
|
28 |
5 3
|
lhpbase |
|
29 |
27 28
|
syl |
|
30 |
5 7
|
latmcl |
|
31 |
20 26 29 30
|
syl3anc |
|
32 |
5 6
|
latjcl |
|
33 |
20 25 31 32
|
syl3anc |
|
34 |
18 33
|
eqeltrd |
|
35 |
21
|
simprd |
|
36 |
10 15 13 35
|
syl3anc |
|
37 |
5 1 6
|
latlej1 |
|
38 |
20 25 31 37
|
syl3anc |
|
39 |
5 1
|
lattr |
|
40 |
20 25 33 29 39
|
syl13anc |
|
41 |
38 40
|
mpand |
|
42 |
36 41
|
mtod |
|
43 |
18
|
breq1d |
|
44 |
42 43
|
mtbird |
|
45 |
34 44
|
jca |
|
46 |
45
|
rexlimdv3a |
|
47 |
9 46
|
mpd |
|