Metamath Proof Explorer


Theorem cdlemg8

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
Assertion cdlemg8 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P = P K HL W H
8 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P = P P A ¬ P ˙ W
9 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P = P Q A ¬ Q ˙ W
10 simpl23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P = P F T
11 simpl3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P = P G T
12 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P = P F G P = P
13 1 2 3 4 5 6 cdlemg8a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
14 7 8 9 10 11 12 13 syl123anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
15 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P K HL W H
16 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P A ¬ P ˙ W Q A ¬ Q ˙ W F T
17 simpl3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P G T
18 simpl3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P ˙ F G Q = P ˙ Q
19 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P P
20 1 2 3 4 5 6 cdlemg8d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
21 15 16 17 18 19 20 syl113anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
22 14 21 pm2.61dane K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q P ˙ F G P ˙ W = Q ˙ F G Q ˙ W