Metamath Proof Explorer


Theorem cdlemg8a

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
Assertion cdlemg8a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P K HL W H
8 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q A ¬ Q ˙ W
9 eqid 0. K = 0. K
10 1 3 9 4 5 lhpmat K HL W H Q A ¬ Q ˙ W Q ˙ W = 0. K
11 7 8 10 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ W = 0. K
12 1 4 5 6 cdlemg6 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P F G Q = Q
13 12 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ F G Q = Q ˙ Q
14 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P K HL
15 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q A
16 2 4 hlatjidm K HL Q A Q ˙ Q = Q
17 14 15 16 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ Q = Q
18 13 17 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ F G Q = Q
19 18 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P Q ˙ F G Q ˙ W = Q ˙ W
20 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P F G P = P
21 20 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P ˙ F G P = P ˙ P
22 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P A
23 2 4 hlatjidm K HL P A P ˙ P = P
24 14 22 23 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P ˙ P = P
25 21 24 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P ˙ F G P = P
26 25 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P ˙ F G P ˙ W = P ˙ W
27 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P A ¬ P ˙ W
28 1 3 9 4 5 lhpmat K HL W H P A ¬ P ˙ W P ˙ W = 0. K
29 7 27 28 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P ˙ W = 0. K
30 26 29 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P ˙ F G P ˙ W = 0. K
31 11 19 30 3eqtr4rd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W