Metamath Proof Explorer


Theorem cdlemg8b

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
Assertion cdlemg8b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P ˙ F G P = P ˙ Q

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P K HL
8 7 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P K Lat
9 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P A
10 eqid Base K = Base K
11 10 4 atbase P A P Base K
12 9 11 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P Base K
13 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P Q A
14 10 4 atbase Q A Q Base K
15 13 14 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P Q Base K
16 10 1 2 latlej1 K Lat P Base K Q Base K P ˙ P ˙ Q
17 8 12 15 16 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P ˙ P ˙ Q
18 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P K HL W H
19 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F T
20 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P G T
21 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P A ¬ P ˙ W
22 1 4 5 6 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
23 18 20 21 22 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P G P A ¬ G P ˙ W
24 1 4 5 6 ltrnel K HL W H F T G P A ¬ G P ˙ W F G P A ¬ F G P ˙ W
25 24 simpld K HL W H F T G P A ¬ G P ˙ W F G P A
26 18 19 23 25 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P A
27 10 4 atbase F G P A F G P Base K
28 26 27 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P Base K
29 10 5 6 ltrncl K HL W H G T Q Base K G Q Base K
30 18 20 15 29 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P G Q Base K
31 10 5 6 ltrncl K HL W H F T G Q Base K F G Q Base K
32 18 19 30 31 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q Base K
33 10 1 2 latlej1 K Lat F G P Base K F G Q Base K F G P ˙ F G P ˙ F G Q
34 8 28 32 33 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P ˙ F G P ˙ F G Q
35 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P ˙ F G Q = P ˙ Q
36 34 35 breqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P ˙ P ˙ Q
37 10 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
38 7 9 13 37 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P ˙ Q Base K
39 10 1 2 latjle12 K Lat P Base K F G P Base K P ˙ Q Base K P ˙ P ˙ Q F G P ˙ P ˙ Q P ˙ F G P ˙ P ˙ Q
40 8 12 28 38 39 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P ˙ P ˙ Q F G P ˙ P ˙ Q P ˙ F G P ˙ P ˙ Q
41 17 36 40 mpbi2and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P ˙ F G P ˙ P ˙ Q
42 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P P
43 42 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P F G P
44 1 2 4 ps-1 K HL P A F G P A P F G P P A Q A P ˙ F G P ˙ P ˙ Q P ˙ F G P = P ˙ Q
45 7 9 26 43 9 13 44 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P ˙ F G P ˙ P ˙ Q P ˙ F G P = P ˙ Q
46 41 45 mpbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P ˙ F G P = P ˙ Q