Metamath Proof Explorer


Theorem cdlemg8c

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
Assertion cdlemg8c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P Q ˙ F G Q = P ˙ Q

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P K HL W H
8 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P Q A ¬ Q ˙ W
9 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P A ¬ P ˙ W
10 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F T
11 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P G T
12 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P ˙ F G Q = P ˙ Q
13 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P K HL
14 1 4 5 6 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
15 7 11 9 14 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P G P A ¬ G P ˙ W
16 1 4 5 6 ltrnel K HL W H F T G P A ¬ G P ˙ W F G P A ¬ F G P ˙ W
17 16 simpld K HL W H F T G P A ¬ G P ˙ W F G P A
18 7 10 15 17 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P A
19 1 4 5 6 ltrnel K HL W H G T Q A ¬ Q ˙ W G Q A ¬ G Q ˙ W
20 7 11 8 19 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P G Q A ¬ G Q ˙ W
21 1 4 5 6 ltrnel K HL W H F T G Q A ¬ G Q ˙ W F G Q A ¬ F G Q ˙ W
22 21 simpld K HL W H F T G Q A ¬ G Q ˙ W F G Q A
23 7 10 20 22 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q A
24 2 4 hlatjcom K HL F G P A F G Q A F G P ˙ F G Q = F G Q ˙ F G P
25 13 18 23 24 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P ˙ F G Q = F G Q ˙ F G P
26 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P A
27 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P Q A
28 2 4 hlatjcom K HL P A Q A P ˙ Q = Q ˙ P
29 13 26 27 28 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P P ˙ Q = Q ˙ P
30 12 25 29 3eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q ˙ F G P = Q ˙ P
31 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P P
32 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q = Q K HL W H
33 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q = Q Q A ¬ Q ˙ W
34 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q = Q P A ¬ P ˙ W
35 simpl23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q = Q F T
36 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q = Q G T
37 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q = Q F G Q = Q
38 1 4 5 6 cdlemg6 K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T F G Q = Q F G P = P
39 32 33 34 35 36 37 38 syl123anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q = Q F G P = P
40 39 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q = Q F G P = P
41 40 necon3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G P P F G Q Q
42 31 41 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P F G Q Q
43 1 2 3 4 5 6 cdlemg8b K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T F G Q ˙ F G P = Q ˙ P F G Q Q Q ˙ F G Q = Q ˙ P
44 7 8 9 10 11 30 42 43 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P Q ˙ F G Q = Q ˙ P
45 44 29 eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = P ˙ Q F G P P Q ˙ F G Q = P ˙ Q