Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdlemg8d
Next ⟩
cdlemg8
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdlemg8d
Description:
TODO: FIX COMMENT.
(Contributed by
NM
, 29-Apr-2013)
Ref
Expression
Hypotheses
cdlemg8.l
⊢
≤
˙
=
≤
K
cdlemg8.j
⊢
∨
˙
=
join
⁡
K
cdlemg8.m
⊢
∧
˙
=
meet
⁡
K
cdlemg8.a
⊢
A
=
Atoms
⁡
K
cdlemg8.h
⊢
H
=
LHyp
⁡
K
cdlemg8.t
⊢
T
=
LTrn
⁡
K
⁡
W
Assertion
cdlemg8d
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
F
⁡
G
⁡
P
∨
˙
F
⁡
G
⁡
Q
=
P
∨
˙
Q
∧
F
⁡
G
⁡
P
≠
P
→
P
∨
˙
F
⁡
G
⁡
P
∧
˙
W
=
Q
∨
˙
F
⁡
G
⁡
Q
∧
˙
W
Proof
Step
Hyp
Ref
Expression
1
cdlemg8.l
⊢
≤
˙
=
≤
K
2
cdlemg8.j
⊢
∨
˙
=
join
⁡
K
3
cdlemg8.m
⊢
∧
˙
=
meet
⁡
K
4
cdlemg8.a
⊢
A
=
Atoms
⁡
K
5
cdlemg8.h
⊢
H
=
LHyp
⁡
K
6
cdlemg8.t
⊢
T
=
LTrn
⁡
K
⁡
W
7
1
2
3
4
5
6
cdlemg8b
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
F
⁡
G
⁡
P
∨
˙
F
⁡
G
⁡
Q
=
P
∨
˙
Q
∧
F
⁡
G
⁡
P
≠
P
→
P
∨
˙
F
⁡
G
⁡
P
=
P
∨
˙
Q
8
1
2
3
4
5
6
cdlemg8c
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
F
⁡
G
⁡
P
∨
˙
F
⁡
G
⁡
Q
=
P
∨
˙
Q
∧
F
⁡
G
⁡
P
≠
P
→
Q
∨
˙
F
⁡
G
⁡
Q
=
P
∨
˙
Q
9
7
8
eqtr4d
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
F
⁡
G
⁡
P
∨
˙
F
⁡
G
⁡
Q
=
P
∨
˙
Q
∧
F
⁡
G
⁡
P
≠
P
→
P
∨
˙
F
⁡
G
⁡
P
=
Q
∨
˙
F
⁡
G
⁡
Q
10
9
oveq1d
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
F
⁡
G
⁡
P
∨
˙
F
⁡
G
⁡
Q
=
P
∨
˙
Q
∧
F
⁡
G
⁡
P
≠
P
→
P
∨
˙
F
⁡
G
⁡
P
∧
˙
W
=
Q
∨
˙
F
⁡
G
⁡
Q
∧
˙
W