Metamath Proof Explorer


Theorem cdlemg9

Description: The triples <. P , ( F( GP ) ) , ( FP ) >. and <. Q , ( F( GQ ) ) , ( FQ ) >. are axially perspective by dalaw . Part of Lemma G of Crawley p. 116, last 2 lines. TODO: FIX COMMENT. (Contributed by NM, 1-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
Assertion cdlemg9 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ F G P ˙ Q ˙ F G Q ˙ F G P ˙ G P ˙ F G Q ˙ G Q ˙ G P ˙ P ˙ G Q ˙ Q

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 1 2 3 4 5 6 cdlemg9b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ Q ˙ F G P ˙ F G Q ˙ G P ˙ G Q
8 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q K HL
9 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P A
10 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q K HL W H
11 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q F T
12 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q G T
13 1 4 5 6 ltrncoat K HL W H F T G T P A F G P A
14 10 11 12 9 13 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q F G P A
15 1 4 5 6 ltrnat K HL W H G T P A G P A
16 10 12 9 15 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q G P A
17 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q Q A
18 1 4 5 6 ltrncoat K HL W H F T G T Q A F G Q A
19 10 11 12 17 18 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q F G Q A
20 1 4 5 6 ltrnat K HL W H G T Q A G Q A
21 10 12 17 20 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q G Q A
22 1 2 3 4 dalaw K HL P A F G P A G P A Q A F G Q A G Q A P ˙ Q ˙ F G P ˙ F G Q ˙ G P ˙ G Q P ˙ F G P ˙ Q ˙ F G Q ˙ F G P ˙ G P ˙ F G Q ˙ G Q ˙ G P ˙ P ˙ G Q ˙ Q
23 8 9 14 16 17 19 21 22 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ Q ˙ F G P ˙ F G Q ˙ G P ˙ G Q P ˙ F G P ˙ Q ˙ F G Q ˙ F G P ˙ G P ˙ F G Q ˙ G Q ˙ G P ˙ P ˙ G Q ˙ Q
24 7 23 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ F G P ˙ Q ˙ F G Q ˙ F G P ˙ G P ˙ F G Q ˙ G Q ˙ G P ˙ P ˙ G Q ˙ Q