Metamath Proof Explorer


Theorem cdlemg9a

Description: TODO: FIX COMMENT. (Contributed by NM, 1-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
cdlemg9.u U = P ˙ Q ˙ W
Assertion cdlemg9a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ U ˙ F G P ˙ U ˙ G P ˙ U

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 cdlemg9.u U = P ˙ Q ˙ W
8 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q K HL
9 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P A
10 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q K HL W H
11 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q F T
12 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q G T
13 1 4 5 6 ltrncoat K HL W H F T G T P A F G P A
14 10 11 12 9 13 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q F G P A
15 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q W H
16 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P A ¬ P ˙ W
17 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q Q A
18 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P Q
19 1 2 3 4 5 7 cdleme0a K HL W H P A ¬ P ˙ W Q A P Q U A
20 8 15 16 17 18 19 syl212anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q U A
21 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q F G P ˙ F G Q P ˙ Q
22 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q Q A ¬ Q ˙ W
23 5 6 1 2 4 3 7 cdlemg2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = F G P ˙ U
24 10 16 22 11 12 23 syl122anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q F G P ˙ F G Q = F G P ˙ U
25 1 2 3 4 5 7 cdlemg3a K HL W H P A ¬ P ˙ W Q A P ˙ Q = P ˙ U
26 8 15 16 17 25 syl211anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ Q = P ˙ U
27 21 24 26 3netr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q F G P ˙ U P ˙ U
28 27 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ U F G P ˙ U
29 1 2 3 4 2llnma3r K HL P A F G P A U A P ˙ U F G P ˙ U P ˙ U ˙ F G P ˙ U = U
30 8 9 14 20 28 29 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ U ˙ F G P ˙ U = U
31 1 4 5 6 ltrnat K HL W H G T P A G P A
32 10 12 9 31 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q G P A
33 1 2 4 hlatlej2 K HL G P A U A U ˙ G P ˙ U
34 8 32 20 33 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q U ˙ G P ˙ U
35 30 34 eqbrtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ U ˙ F G P ˙ U ˙ G P ˙ U