Metamath Proof Explorer


Theorem cdlemg9b

Description: The triples <. P , ( F( GP ) ) , ( FP ) >. and <. Q , ( F( GQ ) ) , ( FQ ) >. are centrally perspective. TODO: FIX COMMENT. (Contributed by NM, 1-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
Assertion cdlemg9b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ Q ˙ F G P ˙ F G Q ˙ G P ˙ G Q

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 eqid P ˙ Q ˙ W = P ˙ Q ˙ W
8 1 2 3 4 5 6 7 cdlemg9a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ P ˙ Q ˙ W ˙ F G P ˙ P ˙ Q ˙ W ˙ G P ˙ P ˙ Q ˙ W
9 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q K HL
10 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q W H
11 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P A ¬ P ˙ W
12 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q Q A
13 1 2 3 4 5 7 cdlemg3a K HL W H P A ¬ P ˙ W Q A P ˙ Q = P ˙ P ˙ Q ˙ W
14 9 10 11 12 13 syl211anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ Q = P ˙ P ˙ Q ˙ W
15 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q K HL W H
16 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q Q A ¬ Q ˙ W
17 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q F T
18 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q G T
19 5 6 1 2 4 3 7 cdlemg2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = F G P ˙ P ˙ Q ˙ W
20 15 11 16 17 18 19 syl122anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q F G P ˙ F G Q = F G P ˙ P ˙ Q ˙ W
21 14 20 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ Q ˙ F G P ˙ F G Q = P ˙ P ˙ Q ˙ W ˙ F G P ˙ P ˙ Q ˙ W
22 5 6 1 2 4 3 7 cdlemg2k K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T G P ˙ G Q = G P ˙ P ˙ Q ˙ W
23 15 11 16 18 22 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q G P ˙ G Q = G P ˙ P ˙ Q ˙ W
24 8 21 23 3brtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F G P ˙ F G Q P ˙ Q P ˙ Q ˙ F G P ˙ F G Q ˙ G P ˙ G Q