| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk.b |
|
| 2 |
|
cdlemk.l |
|
| 3 |
|
cdlemk.j |
|
| 4 |
|
cdlemk.a |
|
| 5 |
|
cdlemk.h |
|
| 6 |
|
cdlemk.t |
|
| 7 |
|
cdlemk.r |
|
| 8 |
|
cdlemk.m |
|
| 9 |
|
cdlemk.s |
|
| 10 |
|
cdlemk.v |
|
| 11 |
|
simp1 |
|
| 12 |
|
simp2 |
|
| 13 |
|
simp311 |
|
| 14 |
|
simp312 |
|
| 15 |
|
simp32 |
|
| 16 |
|
simp33 |
|
| 17 |
15 16
|
jca |
|
| 18 |
1 2 3 4 5 6 7 8
|
cdlemk6 |
|
| 19 |
11 12 13 14 17 18
|
syl113anc |
|
| 20 |
|
simp21l |
|
| 21 |
|
simp22 |
|
| 22 |
|
simp23 |
|
| 23 |
20 21 22
|
3jca |
|
| 24 |
1 2 3 4 5 6 7 8 9
|
cdlemksv2 |
|
| 25 |
11 23 13 14 15 24
|
syl113anc |
|
| 26 |
|
simp11 |
|
| 27 |
|
simp13 |
|
| 28 |
2 3 4 5 6 7
|
trljat1 |
|
| 29 |
26 27 21 28
|
syl3anc |
|
| 30 |
29
|
oveq1d |
|
| 31 |
25 30
|
eqtrd |
|
| 32 |
|
simp11l |
|
| 33 |
32
|
hllatd |
|
| 34 |
|
simp12 |
|
| 35 |
|
simp21r |
|
| 36 |
26 34 35
|
3jca |
|
| 37 |
|
simp313 |
|
| 38 |
1 2 3 4 5 6 7 8 9
|
cdlemksat |
|
| 39 |
36 23 13 37 16 38
|
syl113anc |
|
| 40 |
1 4
|
atbase |
|
| 41 |
39 40
|
syl |
|
| 42 |
|
simp11r |
|
| 43 |
|
simp22l |
|
| 44 |
1 2 3 4 5 6 7 8 10
|
cdlemkvcl |
|
| 45 |
32 42 34 27 35 43 44
|
syl231anc |
|
| 46 |
1 3
|
latjcom |
|
| 47 |
33 41 45 46
|
syl3anc |
|
| 48 |
10
|
a1i |
|
| 49 |
1 2 3 4 5 6 7 8 9
|
cdlemksv2 |
|
| 50 |
36 23 13 37 16 49
|
syl113anc |
|
| 51 |
2 3 4 5 6 7
|
trljat1 |
|
| 52 |
26 35 21 51
|
syl3anc |
|
| 53 |
2 4 5 6
|
ltrnat |
|
| 54 |
26 35 43 53
|
syl3anc |
|
| 55 |
3 4
|
hlatjcom |
|
| 56 |
32 54 43 55
|
syl3anc |
|
| 57 |
52 56
|
eqtr4d |
|
| 58 |
2 4 5 6
|
ltrnat |
|
| 59 |
26 20 43 58
|
syl3anc |
|
| 60 |
35 34
|
jca |
|
| 61 |
4 5 6 7
|
trlcocnvat |
|
| 62 |
26 60 16 61
|
syl3anc |
|
| 63 |
3 4
|
hlatjcom |
|
| 64 |
32 59 62 63
|
syl3anc |
|
| 65 |
57 64
|
oveq12d |
|
| 66 |
50 65
|
eqtrd |
|
| 67 |
48 66
|
oveq12d |
|
| 68 |
47 67
|
eqtrd |
|
| 69 |
19 31 68
|
3brtr4d |
|