Metamath Proof Explorer


Theorem ceilcld

Description: Closure of the ceiling function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis ceilcld.1 φ A
Assertion ceilcld φ A

Proof

Step Hyp Ref Expression
1 ceilcld.1 φ A
2 ceilcl A A
3 1 2 syl φ A