Metamath Proof Explorer


Theorem ceile

Description: The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007)

Ref Expression
Assertion ceile A B A B A B

Proof

Step Hyp Ref Expression
1 ceim1l A - A - 1 < A
2 1 adantr A B - A - 1 < A
3 ceicl A A
4 zre A A
5 peano2rem A - A - 1
6 3 4 5 3syl A - A - 1
7 6 adantr A B - A - 1
8 simpl A B A
9 zre B B
10 9 adantl A B B
11 ltletr - A - 1 A B - A - 1 < A A B - A - 1 < B
12 7 8 10 11 syl3anc A B - A - 1 < A A B - A - 1 < B
13 2 12 mpand A B A B - A - 1 < B
14 zlem1lt A B A B - A - 1 < B
15 3 14 sylan A B A B - A - 1 < B
16 13 15 sylibrd A B A B A B
17 16 3impia A B A B A B