Metamath Proof Explorer


Theorem ceilid

Description: An integer is its own ceiling. (Contributed by AV, 30-Nov-2018)

Ref Expression
Assertion ceilid A A = A

Proof

Step Hyp Ref Expression
1 zre A A
2 ceilval A A = A
3 1 2 syl A A = A
4 znegcl A A
5 flid A A = A
6 4 5 syl A A = A
7 6 negeqd A A = A
8 zcn A A
9 8 negnegd A A = A
10 3 7 9 3eqtrd A A = A