Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The floor and ceiling functions
ceilidz
Next ⟩
flleceil
Metamath Proof Explorer
Ascii
Unicode
Theorem
ceilidz
Description:
A real number equals its ceiling iff it is an integer.
(Contributed by
AV
, 30-Nov-2018)
Ref
Expression
Assertion
ceilidz
⊢
A
∈
ℝ
→
A
∈
ℤ
↔
A
=
A
Proof
Step
Hyp
Ref
Expression
1
ceilid
⊢
A
∈
ℤ
→
A
=
A
2
ceilcl
⊢
A
∈
ℝ
→
A
∈
ℤ
3
eleq1
⊢
A
=
A
→
A
∈
ℤ
↔
A
∈
ℤ
4
2
3
syl5ibcom
⊢
A
∈
ℝ
→
A
=
A
→
A
∈
ℤ
5
1
4
impbid2
⊢
A
∈
ℝ
→
A
∈
ℤ
↔
A
=
A