Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995) (Proof shortened by BJ, 1-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | ceqex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a | ||
2 | 1 | ex | |
3 | eqvisset | ||
4 | alexeqg | ||
5 | 3 4 | syl | |
6 | sp | ||
7 | 6 | com12 | |
8 | 5 7 | sylbird | |
9 | 2 8 | impbid |