Metamath Proof Explorer


Theorem ceqsal

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypotheses ceqsal.1 x ψ
ceqsal.2 A V
ceqsal.3 x = A φ ψ
Assertion ceqsal x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsal.1 x ψ
2 ceqsal.2 A V
3 ceqsal.3 x = A φ ψ
4 1 3 ceqsalg A V x x = A φ ψ
5 2 4 ax-mp x x = A φ ψ