Metamath Proof Explorer


Theorem ceqsal

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993) Avoid df-clab . (Revised by Wolf Lammen, 23-Jan-2025)

Ref Expression
Hypotheses ceqsal.1 x ψ
ceqsal.2 A V
ceqsal.3 x = A φ ψ
Assertion ceqsal x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsal.1 x ψ
2 ceqsal.2 A V
3 ceqsal.3 x = A φ ψ
4 1 19.23 x x = A ψ x x = A ψ
5 3 pm5.74i x = A φ x = A ψ
6 5 albii x x = A φ x x = A ψ
7 2 isseti x x = A
8 7 a1bi ψ x x = A ψ
9 4 6 8 3bitr4i x x = A φ ψ