Metamath Proof Explorer


Theorem ceqsalg

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT . (Contributed by NM, 29-Oct-2003) (Proof shortened by BJ, 29-Sep-2019)

Ref Expression
Hypotheses ceqsalg.1 x ψ
ceqsalg.2 x = A φ ψ
Assertion ceqsalg A V x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsalg.1 x ψ
2 ceqsalg.2 x = A φ ψ
3 2 ax-gen x x = A φ ψ
4 ceqsalt x ψ x x = A φ ψ A V x x = A φ ψ
5 1 3 4 mp3an12 A V x x = A φ ψ