Metamath Proof Explorer


Theorem ceqsalgALT

Description: Alternate proof of ceqsalg , not using ceqsalt . (Contributed by NM, 29-Oct-2003) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Revised by BJ, 29-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ceqsalg.1 x ψ
ceqsalg.2 x = A φ ψ
Assertion ceqsalgALT A V x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsalg.1 x ψ
2 ceqsalg.2 x = A φ ψ
3 elisset A V x x = A
4 nfa1 x x x = A φ
5 2 biimpd x = A φ ψ
6 5 a2i x = A φ x = A ψ
7 6 sps x x = A φ x = A ψ
8 4 1 7 exlimd x x = A φ x x = A ψ
9 3 8 syl5com A V x x = A φ ψ
10 2 biimprcd ψ x = A φ
11 1 10 alrimi ψ x x = A φ
12 9 11 impbid1 A V x x = A φ ψ