Metamath Proof Explorer


Theorem ceqsalt

Description: Closed theorem version of ceqsalg . (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Assertion ceqsalt x ψ x x = A φ ψ A V x x = A φ ψ

Proof

Step Hyp Ref Expression
1 elisset A V x x = A
2 1 3ad2ant3 x ψ x x = A φ ψ A V x x = A
3 biimp φ ψ φ ψ
4 3 imim3i x = A φ ψ x = A φ x = A ψ
5 4 al2imi x x = A φ ψ x x = A φ x x = A ψ
6 5 3ad2ant2 x ψ x x = A φ ψ A V x x = A φ x x = A ψ
7 19.23t x ψ x x = A ψ x x = A ψ
8 7 3ad2ant1 x ψ x x = A φ ψ A V x x = A ψ x x = A ψ
9 6 8 sylibd x ψ x x = A φ ψ A V x x = A φ x x = A ψ
10 2 9 mpid x ψ x x = A φ ψ A V x x = A φ ψ
11 biimpr φ ψ ψ φ
12 11 imim2i x = A φ ψ x = A ψ φ
13 12 com23 x = A φ ψ ψ x = A φ
14 13 alimi x x = A φ ψ x ψ x = A φ
15 14 3ad2ant2 x ψ x x = A φ ψ A V x ψ x = A φ
16 19.21t x ψ x ψ x = A φ ψ x x = A φ
17 16 3ad2ant1 x ψ x x = A φ ψ A V x ψ x = A φ ψ x x = A φ
18 15 17 mpbid x ψ x x = A φ ψ A V ψ x x = A φ
19 10 18 impbid x ψ x x = A φ ψ A V x x = A φ ψ