Metamath Proof Explorer


Theorem ceqsalt

Description: Closed theorem version of ceqsalg . (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Assertion ceqsalt x ψ x x = A φ ψ A V x x = A φ ψ

Proof

Step Hyp Ref Expression
1 biimp φ ψ φ ψ
2 1 imim3i x = A φ ψ x = A φ x = A ψ
3 2 al2imi x x = A φ ψ x x = A φ x x = A ψ
4 elisset A V x x = A
5 19.23t x ψ x x = A ψ x x = A ψ
6 5 biimpd x ψ x x = A ψ x x = A ψ
7 4 6 syl7 x ψ x x = A ψ A V ψ
8 3 7 sylan9r x ψ x x = A φ ψ x x = A φ A V ψ
9 8 com23 x ψ x x = A φ ψ A V x x = A φ ψ
10 9 3impia x ψ x x = A φ ψ A V x x = A φ ψ
11 ceqsal1t x ψ x x = A φ ψ ψ x x = A φ
12 11 3adant3 x ψ x x = A φ ψ A V ψ x x = A φ
13 10 12 impbid x ψ x x = A φ ψ A V x x = A φ ψ