Metamath Proof Explorer


Theorem ceqsalv

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993) Avoid ax-12 . (Revised by SN, 8-Sep-2024)

Ref Expression
Hypotheses ceqsalv.1 A V
ceqsalv.2 x = A φ ψ
Assertion ceqsalv x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsalv.1 A V
2 ceqsalv.2 x = A φ ψ
3 2 pm5.74i x = A φ x = A ψ
4 3 albii x x = A φ x x = A ψ
5 19.23v x x = A ψ x x = A ψ
6 1 isseti x x = A
7 pm5.5 x x = A x x = A ψ ψ
8 6 7 ax-mp x x = A ψ ψ
9 4 5 8 3bitri x x = A φ ψ