Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
ceqsex
Metamath Proof Explorer
Description: Elimination of an existential quantifier, using implicit substitution.
(Contributed by NM , 2-Mar-1995) (Revised by Mario Carneiro , 10-Oct-2016) (Proof shortened by Wolf Lammen , 22-Jan-2025)
Ref
Expression
Hypotheses
ceqsex.1
⊢ Ⅎ x ψ
ceqsex.2
⊢ A ∈ V
ceqsex.3
⊢ x = A → φ ↔ ψ
Assertion
ceqsex
⊢ ∃ x x = A ∧ φ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
ceqsex.1
⊢ Ⅎ x ψ
2
ceqsex.2
⊢ A ∈ V
3
ceqsex.3
⊢ x = A → φ ↔ ψ
4
alinexa
⊢ ∀ x x = A → ¬ φ ↔ ¬ ∃ x x = A ∧ φ
5
1
nfn
⊢ Ⅎ x ¬ ψ
6
3
notbid
⊢ x = A → ¬ φ ↔ ¬ ψ
7
5 2 6
ceqsal
⊢ ∀ x x = A → ¬ φ ↔ ¬ ψ
8
4 7
bitr3i
⊢ ¬ ∃ x x = A ∧ φ ↔ ¬ ψ
9
8
con4bii
⊢ ∃ x x = A ∧ φ ↔ ψ