Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The universal class ceqsex  
				
		 
		
			
		 
		Description:   Elimination of an existential quantifier, using implicit substitution.
       (Contributed by NM , 2-Mar-1995)   (Revised by Mario Carneiro , 10-Oct-2016)   (Proof shortened by Wolf Lammen , 22-Jan-2025) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ceqsex.1   ⊢   Ⅎ  x   ψ        
					 
					
						ceqsex.2   ⊢   A  ∈  V       
					 
					
						ceqsex.3    ⊢   x  =  A    →    φ   ↔   ψ         
					 
				
					Assertion 
					ceqsex    ⊢   ∃  x    x  =  A    ∧   φ      ↔   ψ        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ceqsex.1  ⊢   Ⅎ  x   ψ        
						
							2 
								
							 
							ceqsex.2  ⊢   A  ∈  V       
						
							3 
								
							 
							ceqsex.3   ⊢   x  =  A    →    φ   ↔   ψ         
						
							4 
								
							 
							alinexa   ⊢   ∀  x    x  =  A    →   ¬   φ        ↔   ¬   ∃  x    x  =  A    ∧   φ             
						
							5 
								1 
							 
							nfn  ⊢   Ⅎ  x   ¬   ψ          
						
							6 
								3 
							 
							notbid   ⊢   x  =  A    →    ¬   φ     ↔   ¬   ψ           
						
							7 
								5  2  6 
							 
							ceqsal   ⊢   ∀  x    x  =  A    →   ¬   φ        ↔   ¬   ψ          
						
							8 
								4  7 
							 
							bitr3i   ⊢   ¬   ∃  x    x  =  A    ∧   φ        ↔   ¬   ψ          
						
							9 
								8 
							 
							con4bii   ⊢   ∃  x    x  =  A    ∧   φ      ↔   ψ