Metamath Proof Explorer


Theorem ceqsex

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016) (Proof shortened by Wolf Lammen, 22-Jan-2025)

Ref Expression
Hypotheses ceqsex.1 x ψ
ceqsex.2 A V
ceqsex.3 x = A φ ψ
Assertion ceqsex x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsex.1 x ψ
2 ceqsex.2 A V
3 ceqsex.3 x = A φ ψ
4 alinexa x x = A ¬ φ ¬ x x = A φ
5 1 nfn x ¬ ψ
6 3 notbid x = A ¬ φ ¬ ψ
7 5 2 6 ceqsal x x = A ¬ φ ¬ ψ
8 4 7 bitr3i ¬ x x = A φ ¬ ψ
9 8 con4bii x x = A φ ψ