Metamath Proof Explorer


Theorem ceqsex2

Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006)

Ref Expression
Hypotheses ceqsex2.1 xψ
ceqsex2.2 yχ
ceqsex2.3 AV
ceqsex2.4 BV
ceqsex2.5 x=Aφψ
ceqsex2.6 y=Bψχ
Assertion ceqsex2 xyx=Ay=Bφχ

Proof

Step Hyp Ref Expression
1 ceqsex2.1 xψ
2 ceqsex2.2 yχ
3 ceqsex2.3 AV
4 ceqsex2.4 BV
5 ceqsex2.5 x=Aφψ
6 ceqsex2.6 y=Bψχ
7 3anass x=Ay=Bφx=Ay=Bφ
8 7 exbii yx=Ay=Bφyx=Ay=Bφ
9 19.42v yx=Ay=Bφx=Ayy=Bφ
10 8 9 bitri yx=Ay=Bφx=Ayy=Bφ
11 10 exbii xyx=Ay=Bφxx=Ayy=Bφ
12 nfv xy=B
13 12 1 nfan xy=Bψ
14 13 nfex xyy=Bψ
15 5 anbi2d x=Ay=Bφy=Bψ
16 15 exbidv x=Ayy=Bφyy=Bψ
17 14 3 16 ceqsex xx=Ayy=Bφyy=Bψ
18 2 4 6 ceqsex yy=Bψχ
19 11 17 18 3bitri xyx=Ay=Bφχ