Metamath Proof Explorer


Theorem ceqsex3v

Description: Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011)

Ref Expression
Hypotheses ceqsex3v.1 A V
ceqsex3v.2 B V
ceqsex3v.3 C V
ceqsex3v.4 x = A φ ψ
ceqsex3v.5 y = B ψ χ
ceqsex3v.6 z = C χ θ
Assertion ceqsex3v x y z x = A y = B z = C φ θ

Proof

Step Hyp Ref Expression
1 ceqsex3v.1 A V
2 ceqsex3v.2 B V
3 ceqsex3v.3 C V
4 ceqsex3v.4 x = A φ ψ
5 ceqsex3v.5 y = B ψ χ
6 ceqsex3v.6 z = C χ θ
7 anass x = A y = B z = C φ x = A y = B z = C φ
8 3anass x = A y = B z = C x = A y = B z = C
9 8 anbi1i x = A y = B z = C φ x = A y = B z = C φ
10 df-3an y = B z = C φ y = B z = C φ
11 10 anbi2i x = A y = B z = C φ x = A y = B z = C φ
12 7 9 11 3bitr4i x = A y = B z = C φ x = A y = B z = C φ
13 12 2exbii y z x = A y = B z = C φ y z x = A y = B z = C φ
14 19.42vv y z x = A y = B z = C φ x = A y z y = B z = C φ
15 13 14 bitri y z x = A y = B z = C φ x = A y z y = B z = C φ
16 15 exbii x y z x = A y = B z = C φ x x = A y z y = B z = C φ
17 4 3anbi3d x = A y = B z = C φ y = B z = C ψ
18 17 2exbidv x = A y z y = B z = C φ y z y = B z = C ψ
19 1 18 ceqsexv x x = A y z y = B z = C φ y z y = B z = C ψ
20 2 3 5 6 ceqsex2v y z y = B z = C ψ θ
21 19 20 bitri x x = A y z y = B z = C φ θ
22 16 21 bitri x y z x = A y = B z = C φ θ