Metamath Proof Explorer


Theorem ceqsex4v

Description: Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011)

Ref Expression
Hypotheses ceqsex4v.1 A V
ceqsex4v.2 B V
ceqsex4v.3 C V
ceqsex4v.4 D V
ceqsex4v.7 x = A φ ψ
ceqsex4v.8 y = B ψ χ
ceqsex4v.9 z = C χ θ
ceqsex4v.10 w = D θ τ
Assertion ceqsex4v x y z w x = A y = B z = C w = D φ τ

Proof

Step Hyp Ref Expression
1 ceqsex4v.1 A V
2 ceqsex4v.2 B V
3 ceqsex4v.3 C V
4 ceqsex4v.4 D V
5 ceqsex4v.7 x = A φ ψ
6 ceqsex4v.8 y = B ψ χ
7 ceqsex4v.9 z = C χ θ
8 ceqsex4v.10 w = D θ τ
9 19.42vv z w x = A y = B z = C w = D φ x = A y = B z w z = C w = D φ
10 3anass x = A y = B z = C w = D φ x = A y = B z = C w = D φ
11 df-3an z = C w = D φ z = C w = D φ
12 11 anbi2i x = A y = B z = C w = D φ x = A y = B z = C w = D φ
13 10 12 bitr4i x = A y = B z = C w = D φ x = A y = B z = C w = D φ
14 13 2exbii z w x = A y = B z = C w = D φ z w x = A y = B z = C w = D φ
15 df-3an x = A y = B z w z = C w = D φ x = A y = B z w z = C w = D φ
16 9 14 15 3bitr4i z w x = A y = B z = C w = D φ x = A y = B z w z = C w = D φ
17 16 2exbii x y z w x = A y = B z = C w = D φ x y x = A y = B z w z = C w = D φ
18 5 3anbi3d x = A z = C w = D φ z = C w = D ψ
19 18 2exbidv x = A z w z = C w = D φ z w z = C w = D ψ
20 6 3anbi3d y = B z = C w = D ψ z = C w = D χ
21 20 2exbidv y = B z w z = C w = D ψ z w z = C w = D χ
22 1 2 19 21 ceqsex2v x y x = A y = B z w z = C w = D φ z w z = C w = D χ
23 3 4 7 8 ceqsex2v z w z = C w = D χ τ
24 17 22 23 3bitri x y z w x = A y = B z = C w = D φ τ