Metamath Proof Explorer


Theorem ceqsex6v

Description: Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011)

Ref Expression
Hypotheses ceqsex6v.1 A V
ceqsex6v.2 B V
ceqsex6v.3 C V
ceqsex6v.4 D V
ceqsex6v.5 E V
ceqsex6v.6 F V
ceqsex6v.7 x = A φ ψ
ceqsex6v.8 y = B ψ χ
ceqsex6v.9 z = C χ θ
ceqsex6v.10 w = D θ τ
ceqsex6v.11 v = E τ η
ceqsex6v.12 u = F η ζ
Assertion ceqsex6v x y z w v u x = A y = B z = C w = D v = E u = F φ ζ

Proof

Step Hyp Ref Expression
1 ceqsex6v.1 A V
2 ceqsex6v.2 B V
3 ceqsex6v.3 C V
4 ceqsex6v.4 D V
5 ceqsex6v.5 E V
6 ceqsex6v.6 F V
7 ceqsex6v.7 x = A φ ψ
8 ceqsex6v.8 y = B ψ χ
9 ceqsex6v.9 z = C χ θ
10 ceqsex6v.10 w = D θ τ
11 ceqsex6v.11 v = E τ η
12 ceqsex6v.12 u = F η ζ
13 3anass x = A y = B z = C w = D v = E u = F φ x = A y = B z = C w = D v = E u = F φ
14 13 3exbii w v u x = A y = B z = C w = D v = E u = F φ w v u x = A y = B z = C w = D v = E u = F φ
15 19.42vvv w v u x = A y = B z = C w = D v = E u = F φ x = A y = B z = C w v u w = D v = E u = F φ
16 14 15 bitri w v u x = A y = B z = C w = D v = E u = F φ x = A y = B z = C w v u w = D v = E u = F φ
17 16 3exbii x y z w v u x = A y = B z = C w = D v = E u = F φ x y z x = A y = B z = C w v u w = D v = E u = F φ
18 7 anbi2d x = A w = D v = E u = F φ w = D v = E u = F ψ
19 18 3exbidv x = A w v u w = D v = E u = F φ w v u w = D v = E u = F ψ
20 8 anbi2d y = B w = D v = E u = F ψ w = D v = E u = F χ
21 20 3exbidv y = B w v u w = D v = E u = F ψ w v u w = D v = E u = F χ
22 9 anbi2d z = C w = D v = E u = F χ w = D v = E u = F θ
23 22 3exbidv z = C w v u w = D v = E u = F χ w v u w = D v = E u = F θ
24 1 2 3 19 21 23 ceqsex3v x y z x = A y = B z = C w v u w = D v = E u = F φ w v u w = D v = E u = F θ
25 4 5 6 10 11 12 ceqsex3v w v u w = D v = E u = F θ ζ
26 24 25 bitri x y z x = A y = B z = C w v u w = D v = E u = F φ ζ
27 17 26 bitri x y z w v u x = A y = B z = C w = D v = E u = F φ ζ