Metamath Proof Explorer


Theorem ceqsexg

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004)

Ref Expression
Hypotheses ceqsexg.1 x ψ
ceqsexg.2 x = A φ ψ
Assertion ceqsexg A V x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsexg.1 x ψ
2 ceqsexg.2 x = A φ ψ
3 nfe1 x x x = A φ
4 3 1 nfbi x x x = A φ ψ
5 ceqex x = A φ x x = A φ
6 5 2 bibi12d x = A φ φ x x = A φ ψ
7 biid φ φ
8 4 6 7 vtoclg1f A V x x = A φ ψ