Metamath Proof Explorer


Theorem ceqsexgv

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996) Drop ax-10 and ax-12 . (Revised by Gino Giotto, 1-Dec-2023)

Ref Expression
Hypothesis ceqsexgv.1 x = A φ ψ
Assertion ceqsexgv A V x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsexgv.1 x = A φ ψ
2 id x = A x = A
3 2 1 cgsexg A V x x = A φ ψ