Metamath Proof Explorer


Theorem ceqsexgvOLD

Description: Obsolete version of ceqsexgv as of 1-Dec-2023. (Contributed by NM, 29-Dec-1996) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ceqsexgv.1 x = A φ ψ
Assertion ceqsexgvOLD A V x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsexgv.1 x = A φ ψ
2 nfv x ψ
3 2 1 ceqsexg A V x x = A φ ψ