Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
ceqsexv
Metamath Proof Explorer
Description: Elimination of an existential quantifier, using implicit substitution.
(Contributed by NM , 2-Mar-1995) Avoid ax-12 . (Revised by Gino
Giotto , 12-Oct-2024)
Ref
Expression
Hypotheses
ceqsexv.1
⊢ A ∈ V
ceqsexv.2
⊢ x = A → φ ↔ ψ
Assertion
ceqsexv
⊢ ∃ x x = A ∧ φ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
ceqsexv.1
⊢ A ∈ V
2
ceqsexv.2
⊢ x = A → φ ↔ ψ
3
2
biimpa
⊢ x = A ∧ φ → ψ
4
3
exlimiv
⊢ ∃ x x = A ∧ φ → ψ
5
2
biimprcd
⊢ ψ → x = A → φ
6
5
alrimiv
⊢ ψ → ∀ x x = A → φ
7
1
isseti
⊢ ∃ x x = A
8
exintr
⊢ ∀ x x = A → φ → ∃ x x = A → ∃ x x = A ∧ φ
9
6 7 8
mpisyl
⊢ ψ → ∃ x x = A ∧ φ
10
4 9
impbii
⊢ ∃ x x = A ∧ φ ↔ ψ