Metamath Proof Explorer


Theorem ceqsexv

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) Avoid ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses ceqsexv.1 A V
ceqsexv.2 x = A φ ψ
Assertion ceqsexv x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsexv.1 A V
2 ceqsexv.2 x = A φ ψ
3 2 biimpa x = A φ ψ
4 3 exlimiv x x = A φ ψ
5 2 biimprcd ψ x = A φ
6 5 alrimiv ψ x x = A φ
7 1 isseti x x = A
8 exintr x x = A φ x x = A x x = A φ
9 6 7 8 mpisyl ψ x x = A φ
10 4 9 impbii x x = A φ ψ