Metamath Proof Explorer


Theorem ceqsexvOLD

Description: Obsolete version of ceqsexv as of 12-Oct-2024. (Contributed by NM, 2-Mar-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ceqsexvOLD.1 A V
ceqsexvOLD.2 x = A φ ψ
Assertion ceqsexvOLD x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsexvOLD.1 A V
2 ceqsexvOLD.2 x = A φ ψ
3 nfv x ψ
4 3 1 2 ceqsex x x = A φ ψ